

(Months) Classes	frequency students)
1-10	2
11-20	7
21-30	12
31-40	9
1	

Include Enclude.

e.g. Convert following discontinuous Data into Continuous Data.

classes	Freq.	1	Classes	Freq.
1-10	2	hap=1	0.5-10.5	2
11-20	7	Crap_1	10.5-20.5	
21-30	12	2 2	20.5 - 30.5	(2
31-40/	9 1	20.5	30.5-40.5 (Contin	V0:/\
			Contilla	

Class Mark (in grouped Data)

	cw(x!)	
Classes	= U.L.+LL	Frequency (f;)
0-10	5 = y,	$2=f_1$
10-20	15=12	7=f2
20-30	25=4,	12= +2
30-40	35=14	$9=f_{\star}$
	4	

Class Size.

- = Lower limit _ lover limit,
- = Upperlimit_ Upperlimit.

Central Tendency (Mean, Median, Mode)
Mean (Average) = Sum of observations
total no. of observations
For Raw Data M, Mz, M3,, Mn & Valvey
$Mean = \overline{\chi} = \chi_1 + \chi_2 + \chi_3 + \dots + \chi_n$
$\overline{X} = \sum_{i=1}^{N} X_i$
For Ungrouped Frequency Distribution Table.
$\frac{\text{(Manths)}}{\text{Values(Mi)}} \frac{\text{(No. of students)}}{\text{Frequency (fi)}} \frac{\text{Nifi}}{\text{Nifi}} \Rightarrow \text{mean} = \overline{X} = \frac{\sum x_i f_i}{x_i}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$N = \sum_{i=1}^{\infty} f_i$ $\sum_{i=1}^{i=1} N_i f_i$

median (middle most value) me dran For Raw Data s Ascending order - Middle I Descending order - middle Pada 2, 5, 0, 8, 10 medram = 7 e.g. No. of Data = odd No. of Data = Even. Data -> 2,5,7/8,10,15 medson = 7+8 = 7.5 For Grouped Data. (Continuous Data) Median class: the class whose Cumulative @ Frequency | cumulative freq. is just Frequany (C) classes $\frac{1}{2}$ than $\frac{N}{2}$. greater $C_1 = f_1$ 1, - u, C2=f,+f2 median= l+ = xh f2 12-112 $C_3 = f_1 + f_2 + f_3$ 13-U3 Median 1 = lower limit of median class : **f** 1- u f = freq. Cn= Efi In -. Un C = C.f. of preceeding days. N = 5 fi 1 h= class

mode (the most frequent value) For Raw Data. e.g. 2,3,7,2,3,5,3,3 (Mode = 3) e.g. 2,5,10,10,10,12,15,15,16 mode=10,15 Frequency Distribution Tebus. Modal class: the class with Valves | highest frequency. mode=15 To Highest freq. $| \text{Mode} = 1 + \frac{f_m - f}{2f_m - f' - f'} \times h$ For @ Coronped Data.: (For Continuous) 1= lower limit of modal clays / Frequency aasses h= class size. l, _u, f, fm = the highest frequency. f'= freq. of preceeding class f" = freq. of succeeding class. ln-un

Standard Deviation. (variance) (we do square instead of Modulus) Data = 1, 12, 23, -. My (honorally SD -> mean to about) Variance = $(N_1 - \overline{N})^2 + (N_2 - \overline{N})^2 + (N_3 - \overline{N})^2 + \cdots + (N_N - \overline{N})^2$ (σ^2) Variance = $\sigma^2 = \frac{\mathcal{E}(X_i - \overline{X})^2}{N}$ = for Raw Dates. Standard Deviation (SD.) = $\sigma = \frac{\sum (x_i - \overline{x})^2}{x_i} = \frac{\sum (x_i - \overline{x})^2}{x_i}$ For Charped Data. Variance = $\sigma^2 = \frac{\sum f_i(x_i - \overline{x})^2}{\sum f_i}$ Standard Deviation (SP) = $\sigma = \sqrt{\text{Variance}} = \frac{\sum f_i(x_i - \overline{x})^2}{\sum f_i}$

Mean =
$$\pi = \frac{4+7+8+9+10+12+13+17}{8}$$

$$=\frac{80}{8}=10$$

$$\underline{m} \, \mathcal{D} = \frac{\sum |x_i - \overline{x}|}{n} = \frac{|4 - 10| + |7 - 10| + - - + |17 - 10|}{8} \, m \, \mathcal{D}(m) = \frac{\sum |x_i - \overline{m}|}{n}$$

$$MD(\pi) = \frac{6+3+2+1+0+2+3+7}{8}$$

$$MD = \frac{24}{8} = 3$$

$$)_{MD(M) = \frac{\sum |x_i - M|}{2}}$$

$$= \frac{28}{12} = \frac{7}{3} = 2.33$$

-	Q.5	Mean	Deviation	about	Mean
	6				

% ;	fi	fin;	M:-21	f: x:-x
5	7	35	9	63
10	4	40	4	16
15	6	90	1 L	6
20	3	60	6	18
25	5	125	u a)	55
	25	350	Air	128

$$\bar{\chi} = \text{Mean} = \frac{\sum f_i \chi_i}{\sum f_i} = \frac{350}{25} = 14$$

$$MD = \frac{\sum f_i |x_i - \overline{x}|}{\sum f_i} = \frac{158}{25}$$

$$= 6.32$$

[Q.7] Mean Deviation about Me.	dan
--------------------------------	-----

% ;	fi	1 /x;-m1	f: [x:-w]
5	8	2	16
7	6	0	0
9	2	2	4
10	2	3	6
12	2	5	(0
15	6	8	48
	26		84

median = the middle most value.

$$MD = \sum_{i} \frac{f_{i} |x_{i} - M|}{\sum_{i} f_{i}} = \frac{84}{26} = \frac{42}{13}$$

Q.12 Mean De	viation.	about Me	from 1	1-L+UL 2	3	8
Age	Age	Number (fi)		Comulation fra. (cf)	re/ [n:-m]	f: n:-m]
16-20 GAP=1	15.5-20.5	5	18	5	20	100
	20.5-25.5		23	11.3.28	15	90
26-30 (10)=1	25.5 - 30.5		28	2-3	10	120
31-35 2 2	30.5-35.5	14	33	37=6	5	70
31-35 = 0.5 =	35.5-40.5	26=f	38	63	0	O
41-45 LL U	40.5-45.5	12	43	75	5	60
	45.5-50.5	16	48	91	10	160
51 - 55 0.5	50.5-55.2	9	53	100	15	135
Given		Efi=100 N=5	Lay Yan	AC NO)		735
Discontinuous	Covini		1	redion C	lars [35.	5 - 40.5)
V1360 11	Media	$rac{1}{2}$	-C x h =	36.5+	50 - 37)	5 = 38=M
Wegian)						5 = 38=11
class.	haclass of	size)		and the second		
or ct.	= 5		(m (class Maril	r)		
12 20st C.F. M	0 (W) =	E fi Mi E fi	-M =	735 =	7.35	
	<i>y.</i> (ハ) -	- C1.		100		
N = 100		(21)				

Variance = 52	Q.4		19	
$= \frac{(n+1)(2n+1)}{6} - \frac{1}{2} \left(\frac{n+1}{2} \right) \left(\frac{n+1}{2} \right) + \left(\frac{n+1}{2} \right)^{2}$	7: fi	f; N;	(M;-M)	
6	10 4	40	169 81	338
-(n+1)(2n+1)(n+1), n+1?	14 7	98	25	175
$= \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(n+1)}{1} + \frac{n+1}{2}$	18 12	216	1	12
	24 8	192	2.5	200
(n+1) $(4n+2-6n-6+3n+3)$	28 4	112	81	324 363
$-\frac{(n+1)}{2}$, $\left\{\frac{4n+2-6n-6+3n+3}{6}\right\}$	30 3	90	121	1736
	= 40	760		
$= \left(\frac{N+1}{2}\right) \cdot \left(\frac{N-1}{6}\right)$	= Mean=	z ξ f;γ	$\frac{11}{1} = \frac{766}{4}$	= 19
		Et:	4,	D
12		2		4-44
$\sigma^2 = \frac{\Sigma}{2}$	fi.61: -7		1736	_ = 43.5
	£f;		40	and Maria
				+5

Q.8	C(48) =	LL. + UL		72	
Classes	N:	fi	xifi	(ルーガ)プ	f: (x:-x)
.0-10	5	5	25	484	2420
10-20	15	8	120	144	1152
20 - 30	25	15	375	4	60
30 - 40	35	16	560	64	1024
40-50	45	6	270	324	1944
		2ti =50	Efini = 1350		$\Sigma f: (M:-\pi)^2 = 6600$

$$Mean = \overline{\chi} = \frac{\sum f_i \chi_i}{\sum f_i} = \frac{1350}{50} = 27$$

Variance =
$$\sigma^2 = \frac{\sum f_i(x_i - \overline{x})^2}{\sum f_i} = \frac{6609}{59} = 132$$

Data
$$>$$
 more variable $\frac{1}{N}$ $=$ $\frac{1}{$

$$CVT = \frac{1}{2} \times 100$$

~	7			(CM)						
Q.1	Marks	FA	fB	N;	fax;	fB N;	(x;-N)2	fA(x-7)2	$f_{R}(x_{i}-\overline{x})^{2}$	13
	10-20	9	10	15	135	150	876-16	7885.44		
	20 - 30	17	20	25	425	500	384.16	6530.72	8761.6	
	30 - 40	32	30	35	1120	1020	92.16	2949.12	7683.2	21)
	40 - 50	33	25	45	1485	1125	0.16	5.28	4	
	50 - 60	40	43	55	2200	2365	108.16	4326.4	4650.88	
	60-70	10	15	65	650	975	416.16	4161.6	6242.4	0.7
	70 - 80	9	7	75	675	525	924-16	8317.44	6469.12	
	Melas phot	150	150	XLE:	6690	6690		34179	36 572	

$$\overline{\chi_A} = \frac{\sum f_A \chi_i}{\sum f_A} = \frac{6690}{150} = 44.6 = \overline{\chi_B}$$

$$6^{2} = \frac{\sum f_{1}(M_{1}-M)^{2}}{\sum f_{1}}$$

$$\frac{\sum f_{1}}{\sum f_{2}}$$

$$\frac{\sum f_{2}}{\sum f_{3}}$$

$$\frac{\sum f_{4}}{\sum f_{5}}$$

$$\frac{\sum f_{5}}{\sum f_{5}}$$

N NIOO		
[Q·3]	Firm A	Firm B
Earners	286	648
mean (monthly)	₹5252	₹5253
Variance (02)	100	121
(i) Amount = (to. of workers) x Average pay. Same		
.: Firm'B' has more workers .: Firm'B' pays larger amount.		
(ii) Greater Variability- If mean		

C.V.T = 5/x100 (coeff. of Variation)

is same, them

the safa with

greater variablity.

higher (o) (B) has

For Feam-B.

$$\overline{\chi}_B = 2$$
 $\overline{\zeta}_B = 1.25$
 $CV_A = \frac{\sigma_A}{\overline{\chi}_A} \chi_{100}$
 $= \frac{1.095}{2} \chi_{10}$

$$= \frac{1.095}{2} \times 100$$

$$= \frac{1.25}{2} \times 100$$

$$= \frac{1.25}{2} \times 100$$

CUA CUB Varsiability of A J

=> Consistency of A)

Miscellaneous Exercise - 13.4

Important for JEE-Main

Revision:

• Mean =
$$\overline{\chi} = \frac{\chi_1 + \chi_2 + \dots + \chi_N}{\chi} = \frac{\xi \chi_1}{\chi}$$

· Standard Deviation = 0 = Traviance

• Variance =
$$\sigma^2 = \frac{\sum (M_i - \overline{M})^2}{N}$$

$$\sigma^2 = \frac{\mathcal{E}(N_i^2)}{N} - \left(\frac{\mathcal{E}_{N_i}}{N}\right)^2$$

· Effect of multiplication on Values.

Mean = 71 > Mean = KT

Variance, = 02 Variance = K202

$$\boxed{Q.1} \ \ \overline{M} = 9, \ \sigma^2 = 9.25$$

Mean =
$$\overline{N} = \frac{\Sigma n_i}{N} = g$$

$$\Rightarrow \frac{6+7+10+12+12+13+11+19}{9} = 9$$

$$-(\overline{\chi})^2$$

$$= 9.25 = \frac{642 + x^2 + y^2}{8} - 81$$

$$| x_1^2 + x_2^2 + \dots + x_{19}^2 = 2016 - 1$$

$$| x_1 + x_2 + \dots + x_{19} = 192 - 1$$

$$| x_1 + x_2 + \dots + x_{19} = 192 - 1$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_3 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_3 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_3 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_3 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_3 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_1 + x_2 + \dots + x_{19} = 19$$

$$| x_2 + x_3 + \dots + x_{19} = 19$$

$$| x_1$$

(ii) wrong obs. is replaced by 12?

No. of Obs. =
$$20 = n$$

Obs. $\rightarrow M_1, M_2 \dots, M_{19}, 12$

Mean = $N = \sum_{k=1}^{N_2} M_k$

$$= \underbrace{M_1 + M_2 + \dots + M_{19} + 12}_{20} = \underbrace{10.2}_{20}$$

Vour. = $0^2 = \underbrace{\sum_{k=1}^{N_1} (M_1)^2}_{20} = \underbrace{\sum_{k=1}^{N_2} (M_1)^2}_{20} = \underbrace{\sum_{k=1}^{N_1} (M_1)^2}_$

6 50 Students.		
Subject M P C		
$\frac{\pi}{\sqrt{2}}$ 42 32 40.9 (Coefficient of $\sigma = SD$.)		
$SD = \sigma$ (2 $Variation$) $N = Mean$		
$CV_{M} = \frac{\sigma_{M}}{V_{M}} \times 1000 = \frac{12}{42} \times 1000 = 28.57$ $CV = \frac{\sigma_{M}}{V_{M}} \times 1000 = \frac{12}{12} \times 1000 = 28.57$		
$(V_p = 15 \times 100 = 46.875)$		
$CV_c = \frac{20}{40.9} \times 100 = 48.899$		
Descending 48.899 > 46.875 > 28.57 (CV)		
Chemishy > Physicy > mathy. (vaniability)		

